Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Neurosci Res ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636670

RESUMO

The field of aging biology, which aims to extend healthy lifespans and prevent age-related diseases, has turned its focus to the Callithrix jacchus (common marmoset) to understand the aging process better. This study utilized magnetic resonance imaging (MRI) to non-invasively analyze the brains of 216 marmosets, investigating age-related changes in brain structure; the relationship between body weight and brain volume; and potential differences between males and females. The key findings revealed that, similar to humans, Callithrix jacchus experiences a reduction in total intracranial volume, cortex, subcortex, thalamus, and cingulate volumes as they age, highlighting site-dependent changes in brain tissue. Notably, the study also uncovered sex differences in cerebellar volume. These insights into the structural connectivity and volumetric changes in the marmoset brain throughout aging contribute to accumulating valuable knowledge in the field, promising to inform future aging research and interventions for enhancing healthspan.

2.
Am J Primatol ; : e23630, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655843

RESUMO

The marmoset is a fundamental nonhuman primate model for the study of aging, neurobiology, and many other topics. Genetic management of captive marmoset colonies is complicated by frequent chimerism in the blood and other tissues, a lack of tools to enable cost-effective, genome-wide interrogation of variation, and historic mergers and migrations of animals between colonies. We implemented genotype-by-sequencing (GBS) of hair follicle derived DNA (a minimally chimeric DNA source) of 82 marmosets housed at the Southwest National Primate Research Center (SNPRC). Our primary goals were the genetic characterization of our marmoset population for pedigree verification and colony management and to inform the scientific community of the functional genetic makeup of this valuable resource. We used the GBS data to reconstruct the genetic legacy of recent mergers between colonies, to identify genetically related animals whose relationships were previously unknown due to incomplete pedigree information, and to show that animals in the SNPRC colony appear to exhibit low levels of inbreeding. Of the >99,000 single-nucleotide variants (SNVs) that we characterized, >9800 are located within gene regions known to harbor pathogenic variants of clinical significance in humans. Overall, we show the combination of low-resolution (sparse) genotyping using hair follicle DNA is a powerful strategy for the genetic management of captive marmoset colonies and for identifying potential SNVs for the development of biomedical research models.

3.
Anim Cogn ; 27(1): 20, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429612

RESUMO

While foraging, animals have to find potential food sites, remember these sites, and plan the best navigation route. To deal with problems associated with foraging for multiple and patchy resources, primates may employ heuristic strategies to improve foraging success. Until now, no study has attempted to investigate experimentally the use of such strategies by a primate in a context involving foraging in large-scale space. Thus, we carried out an experimental field study that aimed to test if wild common marmosets (Callithrix jacchus) employ heuristic strategies to efficiently navigate through multiple feeding sites distributed in a large-scale space. In our experiment, we arranged four feeding platforms in a trapezoid configuration with up to 60 possible routes and observe marmosets' decisions under two experimental conditions. In experimental condition I, all platforms contained the same amount of food; in experimental condition II, the platforms had different amounts of food. According to the number and arrangement of the platforms, we tested two heuristic strategies: the Nearest Neighbor Rule and the Gravity Rule. Our results revealed that wild common marmosets prefer to use routes consistent with a heuristic strategy more than expected by chance, regardless of food distribution. The findings also demonstrate that common marmosets seem to integrate different factors such as distance and quantity of food across multiple sites distributed over a large-scale space, employing a combination of heuristic strategies to select the most efficient routes available. In summary, our findings confirm our expectations and provide important insights into the spatial cognition of these small neotropical primates.


Assuntos
Callithrix , Cognição , Animais , Alimentos , Heurística , Rememoração Mental
4.
Animals (Basel) ; 14(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38473175

RESUMO

Marmosets are routinely used in biomedical research, therefore there is an increasing need for updated reference intervals calculated using a large sample size, correct statistics, and considering different variables. Hematological and biochemical values from 472 healthy common marmosets sedated with alphaxalone were collected over a ten-year period (2013-2023). The variables assumed to have influenced the blood-based parameters were compared, i.e., sex, age, housing condition, pregnancy, and contraceptive use. Reference intervals were calculated based on observed percentiles without parametric assumptions, and with parametric assumptions following Box-Cox transformation. Juvenile marmosets showed increased ALP, phosphate, WBC, lymphocyte count, and basophil count and decreased levels of GGT and Fe compared to adults. Marmosets housed strictly indoors showed increased ALT and GGT levels and decreased levels of total bilirubin and neutrophil count compared to marmosets housed with outdoor access. Pregnant marmosets showed increased ALP, total bilirubin, neutrophil count, monocyte count, and basophil count, and decreased levels of AST, ALT, cholesterol, Fe, and lymphocyte count compared to non-pregnant marmosets. Etonogestrel contracepted marmosets showed decreased P-LCR compared to females who were not contracepted. Updated reference intervals will aid researchers and veterinarians in identifying physiological and pathological changes, as well as improve the reproducibility of research in this species.

5.
J Comp Neurol ; 532(1): e25589, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38289192

RESUMO

Retinoic acid-induced 1 (RAI1) encodes a transcriptional regulator critical for brain development and function. RAI1 haploinsufficiency in humans causes a syndromic autism spectrum disorder known as Smith-Magenis syndrome (SMS). The neuroanatomical distribution of RAI1 has not been quantitatively analyzed during the development of the prefrontal cortex, a brain region critical for cognitive function and social behaviors and commonly implicated in autism spectrum disorders, including SMS. Here, we performed comparative analyses to uncover the evolutionarily convergent and divergent expression profiles of RAI1 in major cell types during prefrontal cortex maturation in common marmoset monkeys (Callithrix jacchus) and mice (Mus musculus). We found that while RAI1 in both species is enriched in neurons, the percentage of excitatory neurons that express RAI1 is higher in newborn mice than in newborn marmosets. By contrast, RAI1 shows similar neural distribution in adult marmosets and adult mice. In marmosets, RAI1 is expressed in several primate-specific cell types, including intralaminar astrocytes and MEIS2-expressing prefrontal GABAergic neurons. At the molecular level, we discovered that RAI1 forms a protein complex with transcription factor 20 (TCF20), PHD finger protein 14 (PHF14), and high mobility group 20A (HMG20A) in the marmoset brain. In vitro assays in human cells revealed that TCF20 regulates RAI1 protein abundance. This work demonstrates that RAI1 expression and protein interactions are largely conserved but with some unique expression in primate-specific cells. The results also suggest that altered RAI1 abundance could contribute to disease features in disorders caused by TCF20 dosage imbalance.


Assuntos
Transtorno do Espectro Autista , Síndrome de Smith-Magenis , Transativadores , Animais , Camundongos , Transtorno do Espectro Autista/genética , Callithrix , Neurônios GABAérgicos , Proteínas de Grupo de Alta Mobilidade , Fatores de Transcrição/genética , Transativadores/genética
6.
J Med Primatol ; 53(1): e12659, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37340582

RESUMO

Tumors of the skin and subcutaneous tissues are uncommon in marmosets. In this report, we describe the gross, histopathology, and immunohistochemical findings of a nerve sheath tumor that arose in the left forearm of an adult female marmoset (Callthrix jacchus).


Assuntos
Neoplasias Encefálicas , Neoplasias de Bainha Neural , Feminino , Animais , Callithrix/fisiologia , Antebraço , Neoplasias de Bainha Neural/diagnóstico , Neoplasias de Bainha Neural/veterinária , Síndrome
7.
Cells ; 12(16)2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37626830

RESUMO

Common marmosets (Callithrix jacchus; CMs) are small New World primates widely used in biomedical research. Early stages of such research often include in vitro experiments which require standardized and well-characterized CM cell cultures derived from different tissues. Despite the long history of laboratory work with CMs and high translational potential of such studies, the number of available standardized, well-defined, stable, and validated CM cell lines is still small. While primary cells and immortalized cell lines are mostly used for the studies of infectious diseases, biochemical research, and targeted gene therapy, the main current applications of CM embryonic stem cells and induced pluripotent stem cells are regenerative medicine, stem cell research, generation of transgenic CMs, transplantology, cell therapy, reproductive physiology, oncology, and neurodegenerative diseases. In this review we summarize the data on the main advantages, drawbacks and research applications of CM cell lines published to date including primary cells, immortalized cell lines, lymphoblastoid cell lines, embryonic stem cells, and induced pluripotent stem cells.


Assuntos
Pesquisa Biomédica , Callithrix , Animais , Linhagem Celular , Pesquisa com Células-Tronco , Técnicas de Cultura de Células
8.
Biology (Basel) ; 12(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37627007

RESUMO

Appropriate cardiovascular animal models are urgently needed to investigate genetic, molecular, and therapeutic approaches, yet the translation of results from the currently used species is difficult due to their genetic distance as well as their anatomical or physiological differences. Animal species that are closer to the human situation might help to bridge this translational gap. The common marmoset (Callithrix jacchus) is an interesting candidate to investigate certain heart diseases and cardiovascular comorbidities, yet a basic functional characterization of its hemodynamic system is still missing. Therefore, cardiac functional analyses were performed by utilizing the invasive intracardiac pressure-volume loops (PV loop) system in seven animals, magnetic resonance imaging (MRI) in six animals, and echocardiography in five young adult male common marmosets. For a direct comparison between the three methods, only data from animals for which all three datasets could be acquired were selected. All three modalities were suitable for characterizing cardiac function, though with some systemic variations. In addition, vena cava occlusions were performed to investigate the load-independent parameters collected with the PV loop system, which allowed for a deeper analysis of the cardiac function and for a more sensitive detection of the alterations in a disease state, such as heart failure or certain cardiovascular comorbidities.

9.
Ann N Y Acad Sci ; 1528(1): 13-28, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37615212

RESUMO

An increasingly popular animal model for studying the neural basis of social behavior, cognition, and communication is the common marmoset (Callithrix jacchus). Interest in this New World primate across neuroscience is now being driven by their proclivity for prosociality across their repertoire, high volubility, and rapid development, as well as their amenability to naturalistic testing paradigms and freely moving neural recording and imaging technologies. The complement of these characteristics set marmosets up to be a powerful model of the primate social brain in the years to come. Here, we focus on vocal communication because it is the area that has both made the most progress and illustrates the prodigious potential of this species. We review the current state of the field with a focus on the various brain areas and networks involved in vocal perception and production, comparing the findings from marmosets to other animals, including humans.

10.
Elife ; 122023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449983

RESUMO

Theory of Mind (ToM) refers to the cognitive ability to attribute mental states to other individuals. This ability extends even to the attribution of mental states to animations featuring simple geometric shapes, such as the Frith-Happé animations in which two triangles move either purposelessly (Random condition), exhibit purely physical movement (Goal-directed condition), or move as if one triangle is reacting to the other triangle's mental states (ToM condition). While this capacity in humans has been thoroughly established, research on nonhuman primates has yielded inconsistent results. This study explored how marmosets (Callithrix jacchus), a highly social primate species, process Frith-Happé animations by examining gaze patterns and brain activations of marmosets and humans as they observed these animations. We revealed that both marmosets and humans exhibited longer fixations on one of the triangles in ToM animations, compared to other conditions. However, we did not observe the same pattern of longer overall fixation duration on the ToM animations in marmosets as identified in humans. Furthermore, our findings reveal that both species activated extensive and comparable brain networks when viewing ToM versus Random animations, suggesting that marmosets differentiate between these scenarios similarly to humans. While marmosets did not mimic human overall fixation patterns, their gaze behavior and neural activations indicate a distinction between ToM and non-ToM scenarios. This study expands our understanding of nonhuman primate cognitive abilities, shedding light on potential similarities and differences in ToM processing between marmosets and humans.


In our daily life, we often guess what other people are thinking or intending to do, based on their actions. This ability to ascribe thoughts, intentions or feelings to others is known as Theory of Mind. While we often use our Theory of Mind to understand other humans and interpret social interactions, we can also apply our Theory of Mind to assign feelings and thoughts to animals and even inanimate objects. For example, people watching a movie where the characters are represented by simple shapes, such as triangles, can still see a story unfold, because they infer the triangles' intentions based on what they see on the screen. While it is clear that humans have a Theory of Mind, how the brain manages this capacity and whether other species have similar abilities remain open questions. Dureux et al. used animations showing abstract shapes engaging in social interactions and advanced brain imaging techniques to compare how humans and marmosets ­ a type of monkey that is very social and engages in shared childcare ­ interpret social cues. By comparing the eye movements and brain activity of marmosets to human responses, Dureux et al. wanted to uncover common strategies used by both species to understand social signals, and gain insight into how these strategies have evolved. Dureux et al. found that, like humans, marmosets seem to perceive a difference between shapes interacting socially and moving randomly. Not only did their gaze linger longer on certain shapes in the social scenario, but their brain activity also mirrored that of humans viewing the same scenes. This suggests that, like humans, marmosets possess an inherent ability to interpret social scenarios, even when they are presented in an abstract form, providing a fresh perspective on primates' abilities to interpret social cues. The findings of Dureux et al. have broad implications for our understanding of human social behavior and could lead to the development of better communication strategies, especially for individuals social cognitive conditions, such as Autism Spectrum Disorder. However, further research will be needed to understand the neural processes underpinning the interpretation of social interactions. Dureux et al.'s research indicates that the marmoset monkey may be the ideal organism to perform this research on.


Assuntos
Callithrix , Teoria da Mente , Humanos , Animais , Encéfalo , Cognição , Movimento
11.
Zool Res ; 44(5): 837-847, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37501399

RESUMO

The common marmoset ( Callithrix jacchus) has emerged as a valuable nonhuman primate model in biomedical research with the recent release of high-quality reference genome assemblies. Epileptic marmosets have been independently reported in two Asian primate research centers. Nevertheless, the population genetics within these primate centers and the specific genetic variants associated with epilepsy in marmosets have not yet been elucidated. Here, we characterized the genetic relationships and risk variants for epilepsy in 41 samples from two epileptic marmoset pedigrees using whole-genome sequencing. We identified 14 558 184 single nucleotide polymorphisms (SNPs) from the 41 samples and found higher chimerism levels in blood samples than in fingernail samples. Genetic analysis showed fourth-degree of relatedness among marmosets at the primate centers. In addition, SNP and copy number variation (CNV) analyses suggested that the WW domain-containing oxidoreductase ( WWOX) and Tyrosine-protein phosphatase nonreceptor type 21 ( PTPN21) genes may be associated with epilepsy in marmosets. Notably, KCTD18-like gene deletion was more common in epileptic marmosets than control marmosets. This study provides valuable population genomic resources for marmosets in two Asian primate centers. Genetic analyses identified a reasonable breeding strategy for genetic diversity maintenance in the two centers, while the case-control study revealed potential risk genes/variants associated with epilepsy in marmosets.


Assuntos
Callithrix , Epilepsia , Animais , Callithrix/genética , Estudos de Casos e Controles , Variações do Número de Cópias de DNA , Genética Populacional , Epilepsia/veterinária
12.
Front Aging Neurosci ; 15: 1146245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122384

RESUMO

Morphology and function of the dorsolateral prefrontal cortex (dlPFC), and corresponding working memory performance, are affected early in the aging process, but nearly half of aged individuals are spared of working memory deficits. Translationally relevant model systems are critical for determining the neurobiological drivers of this variability. The common marmoset (Callithrix jacchus) is advantageous as a model for these investigations because, as a non-human primate, marmosets have a clearly defined dlPFC that enables measurement of prefrontal-dependent cognitive functions, and their short (∼10 year) lifespan facilitates longitudinal studies of aging. Previously, we characterized working memory capacity in a cohort of marmosets that collectively covered the lifespan, and found age-related working memory impairment. We also found a remarkable degree of heterogeneity in performance, similar to that found in humans. Here, we tested the hypothesis that changes to synaptic ultrastructure that affect synaptic efficacy stratify marmosets that age with cognitive impairment from those that age without cognitive impairment. We utilized electron microscopy to visualize synapses in the marmoset dlPFC and measured the sizes of boutons, presynaptic mitochondria, and synapses. We found that coordinated scaling of the sizes of synapses and mitochondria with their associated boutons is essential for intact working memory performance in aged marmosets. Further, lack of synaptic scaling, due to a remarkable failure of synaptic mitochondria to scale with presynaptic boutons, selectively underlies age-related working memory impairment. We posit that this decoupling results in mismatched energy supply and demand, leading to impaired synaptic transmission. We also found that aged marmosets have fewer synapses in dlPFC than young, though the severity of synapse loss did not predict whether aging occurred with or without cognitive impairment. This work identifies a novel mechanism of synapse dysfunction that stratifies marmosets that age with cognitive impairment from those that age without cognitive impairment. The process by which synaptic scaling is regulated is yet unknown and warrants future investigation.

13.
Cell Rep ; 42(5): 112480, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37163375

RESUMO

The cerebellum is essential for motor control and cognitive functioning, engaging in bidirectional communication with the cerebral cortex. The common marmoset, a small non-human primate, offers unique advantages for studying cerebello-cerebral circuits. However, the marmoset cerebellum is not well described in published resources. In this study, we present a comprehensive atlas of the marmoset cerebellum comprising (1) fine-detailed anatomical atlases and surface-analysis tools of the cerebellar cortex based on ultra-high-resolution ex vivo MRI, (2) functional connectivity and gradient patterns of the cerebellar cortex revealed by awake resting-state fMRI, and (3) structural-connectivity mapping of cerebellar nuclei using high-resolution diffusion MRI tractography. The atlas elucidates the anatomical details of the marmoset cerebellum, reveals distinct gradient patterns of intra-cerebellar and cerebello-cerebral functional connectivity, and maps the topological relationship of cerebellar nuclei in cerebello-cerebral circuits. As version 5 of the Marmoset Brain Mapping project, this atlas is publicly available at https://marmosetbrainmapping.org/MBMv5.html.


Assuntos
Callithrix , Cerebelo , Animais , Imageamento por Ressonância Magnética , Mapeamento Encefálico , Córtex Cerebelar/diagnóstico por imagem
14.
Trends Neurosci ; 46(5): 394-409, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907677

RESUMO

Human life expectancy has increased over the past few centuries, and the incidence of dementia in the older population is also projected to continue to rise. Neurodegenerative diseases are complex multifactorial conditions for which no effective treatments are currently available. Animal models are necessary to understand the causes and progression of neurodegeneration. Nonhuman primates (NHPs) offer significant advantages for the study of neurodegenerative disease. Among them, the common marmoset, Callithrix jacchus, stands out due to its easy handling, complex brain architecture, and occurrence of spontaneous beta-amyloid (Aß) and phosphorylated tau aggregates with aging. Furthermore, marmosets present physiological adaptations and metabolic alterations associated with the increased risk of dementia in humans. In this review, we discuss the current literature on the use of marmosets as a model of aging and neurodegeneration. We highlight aspects of marmoset physiology associated with aging, such as metabolic alterations, which may help understand their vulnerability to developing a neurodegenerative phenotype that goes beyond normal aging.


Assuntos
Demência , Doenças Neurodegenerativas , Animais , Humanos , Callithrix/fisiologia , Envelhecimento/genética , Modelos Animais
15.
Vet Parasitol Reg Stud Reports ; 38: 100822, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725156

RESUMO

Ecological interactions resulting from human interference and environmental changes have implications for human health and the host animals involved in the parasite cycles. Considering the scarcity of surveys of the parasitic fauna of non-human primates in northeastern Brazil, the objective of this study was to investigate the infection by gastrointestinal parasites in free-ranging common marmosets (Callithrix jacchus) in the State of Sergipe. Fecal samples were collected from 52 animals captured in three protected areas. Most of the samples consisted of adult females and 57% were infected with at least one of the 12 identified parasite taxa. The most frequent intestinal parasite was Prosthenorchis sp., followed by Spiruridae, Entamoeba spp. and Strongylida order. The presence of gastrointestinal parasites was not dependent on sex, age or weight, although there was an association with the capture biome.


Assuntos
Callithrix , Trato Gastrointestinal , Parasitos , Animais , Feminino , Masculino , Brasil/epidemiologia , Callithrix/parasitologia , Ecossistema , Fezes/parasitologia , Gastroenteropatias/epidemiologia , Gastroenteropatias/parasitologia , Gastroenteropatias/veterinária , Trato Gastrointestinal/parasitologia , Doenças Parasitárias em Animais/epidemiologia , Doenças Parasitárias em Animais/parasitologia
16.
Front Neural Circuits ; 17: 1088686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817647

RESUMO

The mammalian retina captures a multitude of diverse features from the external environment and conveys them via the optic nerve to a myriad of retinorecipient nuclei. Understanding how retinal signals act in distinct brain functions is one of the most central and established goals of neuroscience. Using the common marmoset (Callithrix jacchus), a monkey from Northeastern Brazil, as an animal model for parsing how retinal innervation works in the brain, started decades ago due to their marmoset's small bodies, rapid reproduction rate, and brain features. In the course of that research, a large amount of new and sophisticated neuroanatomical techniques was developed and employed to explain retinal connectivity. As a consequence, image and non-image-forming regions, functions, and pathways, as well as retinal cell types were described. Image-forming circuits give rise directly to vision, while the non-image-forming territories support circadian physiological processes, although part of their functional significance is uncertain. Here, we reviewed the current state of knowledge concerning retinal circuitry in marmosets from neuroanatomical investigations. We have also highlighted the aspects of marmoset retinal circuitry that remain obscure, in addition, to identify what further research is needed to better understand the connections and functions of retinorecipient structures.


Assuntos
Callithrix , Retina , Animais , Callithrix/fisiologia , Encéfalo/fisiologia , Visão Ocular , Neurônios , Mamíferos
17.
Front Behav Neurosci ; 17: 1270538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235003

RESUMO

IntelliCage for mice is a rodent home-cage equipped with four corner structures harboring symmetrical double panels for operant conditioning at each of the two sides, either by reward (access to water) or by aversion (non-painful stimuli: air-puffs, LED lights). Corner visits, nose-pokes and actual licks at bottle-nipples are recorded individually using subcutaneously implanted transponders for RFID identification of up to 16 adult mice housed in the same home-cage. This allows for recording individual in-cage activity of mice and applying reward/punishment operant conditioning schemes in corners using workflows designed on a versatile graphic user interface. IntelliCage development had four roots: (i) dissatisfaction with standard approaches for analyzing mouse behavior, including standardization and reproducibility issues, (ii) response to handling and housing animal welfare issues, (iii) the increasing number of mouse models had produced a high work burden on classic manual behavioral phenotyping of single mice. and (iv), studies of transponder-chipped mice in outdoor settings revealed clear genetic behavioral differences in mouse models corresponding to those observed by classic testing in the laboratory. The latter observations were important for the development of home-cage testing in social groups, because they contradicted the traditional belief that animals must be tested under social isolation to prevent disturbance by other group members. The use of IntelliCages reduced indeed the amount of classic testing remarkably, while its flexibility was proved in a wide range of applications worldwide including transcontinental parallel testing. Essentially, two lines of testing emerged: sophisticated analysis of spontaneous behavior in the IntelliCage for screening of new genetic models, and hypothesis testing in many fields of behavioral neuroscience. Upcoming developments of the IntelliCage aim at improved stimulus presentation in the learning corners and videotracking of social interactions within the IntelliCage. Its main advantages are (i) that mice live in social context and are not stressfully handled for experiments, (ii) that studies are not restricted in time and can run in absence of humans, (iii) that it increases reproducibility of behavioral phenotyping worldwide, and (iv) that the industrial standardization of the cage permits retrospective data analysis with new statistical tools even after many years.

18.
Front Behav Neurosci ; 16: 901425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408451

RESUMO

Observational studies of long-term users of ayahuasca, an Amazonian psychedelic brew, suggest an increase in resilience via improvements in emotion and cognition. Ayahuasca has also demonstrated clinical antidepressant effects in human and animal studies; however, its potential prophylactic action in depression has not been previously studied. Therefore, this experimental study sought to evaluate the potential prophylactic effects of repeated and long-term ayahuasca use, via the modulation of resilience, in a non-human primate animal model, Callithrix jacchus, subjected to a protocol for induction of depressive-like behavior. For the formation of the study groups, some juvenile marmosets were kept in their family groups (GF = 7), while for the two experimental groups, the animals were removed from the family and kept socially isolated. Then, part of the isolated animals made up the group in which ayahuasca was administered (AG, n = 6), while for others, no intervention was made (IG, n = 5). AG animals took ayahuasca (1.67 mL/300g body weight) at weeks 4 (before isolation), 8, and 12 (during isolation) of the study. More adaptive stress response was observed for the AG when compared to the IG. The AG showed higher cortisol reactivity and fecal cortisol levels than IG, while both measures were similar to FG. Moreover, AG animals showed no signs of anhedonia and no increase in chronic stress-related behaviors, which were expressed by the IG. Thus, ayahuasca seems to promote the expression of resilient responses, indicating a prophylactic action, buffering the emergence of depressive-like behaviors and cortisol alterations associated with major depression. These results are encouraging for further research on the prophylactic use of psychedelics to prevent psychopathologies associated with chronic stress.

19.
Primates ; 63(6): 683-689, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36114916

RESUMO

Callitrichids are small Neotropical primates and, due to their cooperative breeding system, infants are of particular interest in research on social dynamics. Although a few studies have investigated the role of helpers in this type of system, there is still a lack of research in field studies seeking to determine whether there is a relationship between the number of helpers (adults) in a social group and the motor development of infants. With that in mind, four groups of wild marmosets (Callithrix jacchus) were observed and the motor behaviors of 1 to 4 month-old infants were recorded. To investigate the influence of the adult:infant ratio on motor diversity, used as an indicator of motor development, we ran a GLMM with a Gaussian distribution and found that: (i) in groups with fewer adults, 2-month-old infants show earlier motor diversity; (ii) motor diversity increases with age regardless of the ratio of adult males per infant; (iii) in groups with more adult females per infant, the motor diversity of 2-month-old infants is significantly lower compared to 3-month-old infants. Although adult callitrichid males play an important role in the care of their offspring, the presence of females appears to be a key factor in motor development at this early stage in the study groups. In a cooperative breeding system, the lack of helpers seems to drive the development of independence in infants, resulting in earlier development.


Assuntos
Callithrix , Atividade Motora , Animais , Feminino , Masculino , Callithrix/crescimento & desenvolvimento , Fatores Etários
20.
Elife ; 112022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35880740

RESUMO

Human and non-human primates produce rhythmical sounds as soon as they are born. These early vocalizations are important for soliciting the attention of caregivers. How they develop remains a mystery. The orofacial movements necessary for producing these vocalizations have distinct spatiotemporal signatures. Therefore, their development could potentially be tracked over the course of prenatal life. We densely and longitudinally sampled fetal head and orofacial movements in marmoset monkeys using ultrasound imaging. We show that orofacial movements necessary for producing rhythmical vocalizations differentiate from a larger movement pattern that includes the entire head. We also show that signature features of marmoset infant contact calls emerge prenatally as a distinct pattern of orofacial movements. Our results establish that aspects of the sensorimotor development necessary for vocalizing occur prenatally, even before the production of sound.


Much like human babies, newborn monkeys cry and coo to get their caregiver's attention. They all produce these sounds in the same way. They push air from the lungs to vibrate the vocal cords, and adjust the movement of their jaws, lips, tongue and other muscles to create different kinds of sounds. Ultrasounds show that human fetuses begin making crying-like mouth movements during the last trimester of pregnancy. Yet the prenatal development of this crucial skill remains unclear, as most studies of early primate vocalization take place after birth. To explore this question, Narayanan et al. focused on a small species of monkeys known as marmosets. Regular ultrasounds were performed on four pregnant marmosets, starting on the first day the fetuses' faces became visible and ending the day before delivery. The developing marmosets acquired the ability to independently move their mouth from their head over time, a skill crucial for feeding and vocalizing. By the end of pregnancy, a subset of fetal mouth movements were nearly identical to those produced when baby marmosets call for their caregivers after birth. Human ultrasound studies are needed to confirm whether vocal development follows a similar trajectory in our species.This is likely given the developmental similarities between both species. If so, work in marmosets could be helpful to understand how conditions such as cerebral palsy interfere with this process, and to potentially develop early interventions.


Assuntos
Callithrix , Vocalização Animal , Animais , Humanos , Recém-Nascido , Som
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...